The Universal A-Dynamical System
نویسندگان
چکیده
For any C∗-algebra A, an A-dynamical system is a C∗-dynamical system that contains A and can be generated by the images of A under the semigroup of nonnegative time endomorphisms. There is a universal Adynamical system that occupies a position in noncommutative dynamics that resembles the position of the tangent bundle in commutative dynamics. We describe an approach to noncommutative dilation theory based on the universal A-dynamical system, emphasizing the role of continuous free products of C∗-algebras, noncommutative moment polynomials, and conditional expectations.
منابع مشابه
Universal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملA Dynamical System Approach to Research in Second Language Acquisition
Epistemologically speaking, second language acquisition research (SLAR) might be reconsidered from a complex dynamical system view with interconnected aspects in the ecosystem of language acquisition. The present paper attempts to introduce the tenets of complex system theory and its application in SLAR. It has been suggested that the present dominant traditions in language acquisition research...
متن کاملDynamical System and Semi-Hereditarily Hypercyclic Property
In this paper we give conditions for a tuple of commutative bounded linear operators which holds in the property of the Hypercyclicity Criterion. We characterize topological transitivity and semi-hereiditarily of a dynamical system given by an n-tuple of operators acting on a separable infinite dimensional Banach space .
متن کاملAdmissible Vectors of a Covariant Representation of a Dynamical System
In this paper, we introduce admissible vectors of covariant representations of a dynamical system which are extensions of the usual ones, and compare them with each other. Also, we give some sufficient conditions for a vector to be admissible vector of a covariant pair of a dynamical system. In addition, we show the existence of Parseval frames for some special subspaces of $L^2(G)$ related to...
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کامل